Purification, crystallization and preliminary X-ray diffraction analysis of adenosine triphosphate sulfurylase (ATPS) from the sulfate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774.

نویسندگان

  • Olga Yu Gavel
  • Anna V Kladova
  • Sergey A Bursakov
  • João M Dias
  • Susana Texeira
  • Valery L Shnyrov
  • José J G Moura
  • Isabel Moura
  • Maria J Romão
  • José Trincão
چکیده

Native zinc/cobalt-containing ATP sulfurylase (ATPS; EC 2.7.7.4; MgATP:sulfate adenylyltransferase) from Desulfovibrio desulfuricans ATCC 27774 was purified to homogeneity and crystallized. The orthorhombic crystals diffracted to beyond 2.5 A resolution and the X-ray data collected should allow the determination of the structure of the zinc-bound form of this ATPS. Although previous biochemical studies of this protein indicated the presence of a homotrimer in solution, a dimer was found in the asymmetric unit. Elucidation of this structure will permit a better understanding of the role of the metal in the activity and stability of this family of enzymes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Purification and Preliminary Characterization of Tetraheme Cytochrome c3 and Adenylylsulfate Reductase from the Peptidolytic Sulfate-Reducing Bacterium Desulfovibrio aminophilus DSM 12254

Two proteins were purified and preliminarily characterized from the soluble extract of cells (310 g, wet weight) of the aminolytic and peptidolytic sulfate-reducing bacterium Desulfovibrio (D.) aminophilus DSM 12254. The iron-sulfur flavoenzyme adenylylsulfate (adenosine 5'-phosphosulfate, APS) reductase, a key enzyme in the microbial dissimilatory sulfate reduction, has been purified in three ...

متن کامل

Preferential reduction of the thermodynamically less favorable electron acceptor, sulfate, by a nitrate-reducing strain of the sulfate-reducing bacterium Desulfovibrio desulfuricans 27774.

Desulfovibrio desulfuricans strain 27774 is one of a relative small group of sulfate-reducing bacteria that can also grow with nitrate as an alternative electron acceptor, but how nitrate reduction is regulated in any sulfate-reducing bacterium is controversial. Strain 27774 grew more rapidly and to higher yields of biomass with nitrate than with sulfate or nitrite as the only electron acceptor...

متن کامل

Diversity and origin of Desulfovibrio species: phylogenetic definition of a family.

The different nutritional properties of several Desulfovibrio desulfuricans strains suggest that either the strains are misclassified or there is a high degree of phenotypic diversity within the genus Desulfovibrio. The results of partial 16S rRNA and 23S rRNA sequence determinations demonstrated that Desulfovibrio desulfuricans ATCC 27774 and "Desulfovibrio multispirans" are closely related to...

متن کامل

Cloning, expression and bioinformatics analysis of ATP sulfurylase from Acidithiobacillus ferrooxidans ATCC 23270 in Escherichia coli

Molecular studies of enzymes involved in sulfite oxidation in Acidithiobacillus ferrooxidans have not yet been developed, especially in the ATP sulfurylase (ATPS) of these acidophilus tiobacilli that have importance in biomining. This enzyme synthesizes ATP and sulfate from adenosine phosphosulfate (APS) and pyrophosphate (PPi), final stage of the sulfite oxidation by these organisms in order t...

متن کامل

Evidence for oxidative phosphorylation during the reduction of sulfate with hydrogen by Desulfovibrio desulfuricans.

Desulfovitio d&dfUTiCam is an obligately anaerobic organism that can bc grown heterotrophically with sulfate and an organic electron donor or autotrophically with sulfate, hydrogen, and CO* (1). The presence of sulfate is obligatory for growth both with hydrogen and organic electron donors, except in the case of pyruvate (2). During growth, large amounts of sulfide are produced from the sulfate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta crystallographica. Section F, Structural biology and crystallization communications

دوره 64 Pt 7  شماره 

صفحات  -

تاریخ انتشار 2008